
R;D-A63 653 ON THE EFFECT OF TR-STAGE SAMPLING IN THE F STTISTIC 1/1
(U) WISCONSIN UNIY-NADISON MATHEMATICS RESEARCH CENTER

C F NU ET AL. OCT 85 NRC-TSR-2877 DRR029-80-C-004i

UNCLASSIFIED F/G 12/11 M



"L' L
1111 I'

".6

1. 112

IIJIL25~u
MI O RO T TETCHR

~I

. . . . .. .o1

" MICOCOP RESLUTIN TEI CHRT T

• 'r., .

* V. .'~-~=.m.* .~.=



MRC Technical Summary Report *2877

ON THE EFFECT OF TWO-STAGE SAMPLING
ON THE F STATISTIC

C. F. J. Wu, D. Holt and D. J. Holmes

DTI

October 1985 ELECT
FEB 50

* (Received July 29, 1985) 
I

Qfl ELL. UFY Approved for public release
Distribution unlimited

Sponsored by

*1). S. Army Research Office National Science Foundation Economic and Social

*P. 0. Box 12211 Washington, DC 20550 Research Council

*Research Triangle Park United Kingdom

*North Carolina 27709

. .. . . . . . . . . . .S . *



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

ON THE EFFECT OF TWO-STAGE SAMPLING ON THE F STATISTIC

. C. F. J. Wu, D. Holt and D. J. Holmes*

Technical Summary Report #2877 ..

October 1985

ABSTRACT

We--investigate3Athe effect of intracluster correlation in two-stage

samples on the ordinary F procedures in linear models. A measure is

proposed as a diagnostic and basis for correction to the F statistic. A

decomposition of this measure is given in terms of the contributions of the

individual regressors and their cross products. For known intracluster -

correlation the proposed correction to F performs very well in the numerical

study. For unknown intracluster correlation a simple alternative to the

generalized least squares procedure is proposed and is shown to perform

favorably in the simulation study. -----

.
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SIGNIFICANCE AND EXPLANATION

Users of survey data often ignore the effect of survey design on

analysis. This may be due to the unavailability of information on design such

as cluster labels. Another reason is that standard packages d, not take into

account the design effect. We study the effect of intracluster correlation in

two-stage sampling on the validity of statistical procedures based on the F

statistic. A measure is proposed as a diagnostic and basis for correction to.-*.:.

the F statistic. The proposed correction and related modifications perform

well in the simulation study. We also explain the design effect in terms of

the individual variables and their cross products.
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ON THE EFFECT OF TWO-STAGE SAMPLING ON THE F STATISTIC

C. F. J. Wu, D. Holt arnd D. Holmes*

1. Introduction

* The assumption of independent and identically distributed observations which

* underlies many statistical procedures is called into question when analyzing complex S"

* survey data. The population structure, and particularly the existence of clusters in

* two-stage samples which usually exhibit positive intracluster correlation,

-invalidates the independence assumption. The impact of this in regression analysis

has been investigated in the standard sample survey theory framework by Kish and

* Frankel (1974) and in the linear model framework by Campbell (1979) and Scott and

* Holt (1982). The overall picture is that while ordinary least squares (OLS)

*procedures are unbiased, but not fully efficient, for estimation of the regression

*coefficients, serious difficulties can arise in using the OLS estimators for second

* order terms. Variances of the OLS estimators for the regression coefficients can be

larger, sometimes much larger, than the usual OLS variance expression would indicate

* and estimators for the variances of coefficient estimators do not take this into

account. This leads to underestimation of variances with consequences for confidence

intervals.

* This paper is concerned with following this impact through to the F statistic

* because of its central importance to hypothesis tests and confidence ellipsoids. Our

*C. F. J. Wu is Professor, Department of Statistics, University of Wisconsin-Madison,

* 1210 W. Dayton St., Madison, WI 53706. D. Holt is Professor, and D. J. Holmes is
* Research Fellow, both of the Department of Social Statistics, University of

Southampton, England S09 5NH.

This research is supported in part by Grant HR 7152-1 from the Economic and Social
Research Council of the U.K. C. F. J. Wu is also partially supported by National

* Science Foundation Grant DMS-8502303 and partially sponsored by the United States
Army under Contract No. DAAG29-80-C-0041.



first aim is to investigate the effect of intracluster correlation on the F

statistic. We then seek modifications to the F statistic which will restore its

* usual properties without needing the full set of information and numerical complexity '

of the alternative generalized least squares (GLS) procedure. We also seek

diagnostic statistics which will identify when the ordinary F statistic is likely

to be affected and explore the various factors which contribute to 'his effect.

Finally we compare our alternative procedures with GLS.

. Sections 2 and 3 contain the basic framework and theoretice velopment and lay

the groundwork for modifications to the F statistic. Section 4 isiders examples

of one and two covariates as special cases of the general theory. ,ction 5 presents

numerical results for the case of two independent variables, which iW the simplest

-' allowing many of the factors to be explored. A further modification to the F

statistic is proposed in Section 5 and comparisons made with the iterative GLS

procedure when the intracluster correlation coefficient is unknown. The proposed

*: modifications perform much better than the OLS procedures. They perform almost as

well as the GLS procedures for large values of the intracluster correlation and

better than the GLS for small values. A summary of the numerical and simulation

results and relevant remarks are given in Section 6.

2. F Statistic Under a Regression Model for Two-Stage Samples

Following Campbell (1974) and Scott and Holt (1982), we utilize a regression

model with an error structure which allows for intracluster correlation of the

residual errors:

y =XS + E (2.1)

where there are n observations from a two-stage sample with c clusters drawn at

the first stage of sampling and mt elements drawn from the Xth sampled cluster at
c

the second stage, n = ) mx. Assume C is normal with mean zero and variance-

covariance matrix 0 2V. The sample observations are written in the natural order
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with the first mi elements from the first cluster and so on and V is assumed to

c (.2
have a block diagonal form 0 V with

I' -P P

7 1 pV£ ( 2.2)

If no account is taken of the variance structure, the standard OLS procedures

are
S=(xTxI-IxTy..

8 =

A2 T -1
var(8) = (X X)

where y - X(XTX)-XT)y/(n - k) and there are k explanatory variables.

The F statistic for hypothesis testing and confidence ellipsoids is

2
F(B) = X8-X1 k(2.3)

-2
ny - xs1i /(n - k)

If the cluster labels are known, the natural approach is to use GLS or iterative GLS

(when P is unknown and must be estimated.) We return to this alternative in

Section 5. However, the standard OLS procedures and the F statistic are often used

either because the cluster labels are unavailable (particularly when the survey data

is used for secondary analysis) or because users of the survey data ignore the

effects of P on their analysis. Thus, to test a a %0 the hypothesis is rejected
at the a significance level if .,

F(B 0 ) > F (k,n - k) ; (2.4)
0 C

and the associated (1- a) confidence ellipsoid is

(8 F(8) F (k,n - k)} , (2.5)

where F (k,n - k) is the upper M point of the F distribution with k and

n -k degrees of freedom.

-3- "
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Under the model (2.1)-(2.2) the F statistic does not in general have an F

distribution and the F procedure is invalid. The F test will not have true

significance level equal to the nominal a value and the coverage property of the

I confidence ellipsoid will be similarly distorted. By writing 6 = V 1 /2, F can be

written as

F6Tv/ 2 pv 1/ 2 6/ , (2.6)
F Tv/2(I1 - P)V 1/ 2 6/(n - k)

where 6 = (6 ,6 ) are independent N(0,1) and P = X(XTX)-XT is the
' ' n

projection matrix onto the column space of X. Apart from the two scalar factors

k and n - k, the numerator and denominator in (2.6) are each separately weighted

sums of independent chi-square random variables with the added complication that they

T T1/2 1/2k
are correlated. Thus, 6 V PV 6 is distributed as I XiFi, where the { .}2i=1 1 .-

2
are independent X and the {I are the eigenvalues of PV. Similarly for the

denominator the weights are the eigenvalues of (I- P)V.

The actual coverage probability of the ellipsoid (2.5) can be shown to be

Prob{6TV/ 2 [P - k(n - F (k,n - k)(I - P)]V 1 /2 6 & 0} (see (A.5)), which is not

tractable.

We note that survey data is usually large and the denominator of F, ^ , has

2
mean o [n - tr(PV)]/(n - k), where tr is the trace of a matrix (see Scott and

Holt, 1982). Since n is large and tr(PV) is of the order of k, 02 is nearly

2
unbiased for 0. This suggests that the correlation between the numerator and

denominator of F may be weak and its effect on the validity of F is small. This

is borne out by the numerical results in Section 5.

A simple and revealing way of studying the effect of intracluster correlation

2
on F is to approximate its numerator and Menominator by constant multiples of Xk

2

and X . By matching the first moments the constants are tr(PV)/k and
* n-k

[n - tr(PV)]/(n - k) respectively. Because of the almost unbiasedness of the

-4-

. .~~~ .°.. . . . . .

• - N -'.- . " : .- : : -" " : °' - °. "°' " "°'" -' "



denominator for large n, we focus on tr(PV)/k. If it is substantially different

from one, the distribution of the F statistic is not adequately approximated by

the F distribution. For example, if n is large and

tr(PV)/k < F I(k,n - k)/Fa 2(k,n - k), a2 > al1  the ordinary F test with nominal

level CI has actual level at least a 2 " One may therefore use tr(PV)/k as a

measure of the effect of the intracluster correlation on the ordinary F procedure. "5"*

A better approximation to the true distribution of F can be obtained by

approximating NX5 - XBI 2 and Hy - XON in F by cX2 and c2X where c,
X811 c1X and 2X , wer

2
.' c 2 ' 12 are determined by matching the first two moments (Satterthwaite,

1946). However, ci and Wi depend on tr(PV)2  (similarly c2  and P2 depend

2on tr(V - PV)2), which is not as readily available as tr(PV). Moreover, the

additional gain in accuracy by this more refined approximation is small. Therefore

it is not further pursued.

If P = 0 then V = I and tr(PV)/k 1. In general the true covariance

2 -1
matrix of the OLS estimators for is given by C = (X'X) D, where

D (X'VX)(X'X)- 1 has been termed the misspecification effect (Scott and Holt,

1982). If X'X or D were diagonal,
k" -

k-ltr(PV) = k-ltr(D) = k- l [var(O )/var(Bj1P = 0)) -
1)

would represent the average inflation (due to nonzero P) in variance for the OLS

estimators. More generally k-tr(PV) often captures the main components of the

variance inflation and may be termed the 'approximate misspecification effect'.

The term k-tr(PV) suggests a simple adjustment to F, whose properties are

discussed in the next section.

3. A Modified F Statistic

The foregoing discussion suggests the following simple modification to the F

statistic

-5-
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FX1 1W X I2 /tr(PV) k[n - tr(PV)] (3.)F' = IX- IItrP) = F trP)(. k)(31
2 t r ( P V ) ( n - k ).... , ,

lY - X11 /[n - tr(PV)]

We call (2.4) or (2.5) with F replaced by F' a modified F procedure. Here we

assume P is known. Unknown P will be considered in Section 5. It will be shown

later that the modified F procedure (3.1) is almost exact in most situations in the

simulation study.

For testing a subhypothesis or setting confidence regions for some linear

T T T
combinations of the B.'s, let the parameters of interest be AB = (a1$,'',a )

J q

where A is a q x k matrix of rank q < k. The ordinary F procedure (Draper and

Smith, 1981) for AB is based on the FA statistic and the critical value

F (q,n -k),

A XA

T T -1i-

FA =A^ B XXA A B/ , XA = x(xx)A T  (3.2) Li.-..,
Ny - XBI1 /(n - k)

Note that the denominator of FA is the same as that of F. By approximating the

numerator of FA by a constant multiple of X2 with the same first moment, a simple
q

adjustment to FA is given by

A T T -1 A

(AB - AB) (XAXA) IAB - AO)/tr(PAV)
F'" =.
A AAA

where AY- X2[n tr(PV) teclmspe

q[n -tr(PV)] 33 -"Z:
F FA tr(PAV)(n' - k) (3.3)•'

= A

which is of dimension q. The simulation study in Section 5 shows that the

modified F procedure (3.3) is almost exact in most situations considered there.

2
Since for large n the denominator of FA  is nearly unbiased for 0 the

difference between FA and FA is primarily due to the difference between

tr(PAV) and q. One may use tr(PAV)/q as a measure of the effect of intracluster

-6-
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correlation on the FA procedure. A value larger than F. (q,n - k)/Fa (q,n - k),

a2 > CL1, indicates that the ordinary FA test with nominal level a1  has actual

level at least a2"

The special case q 1 deserves further attention. By writing A as a

T T 21 ' k vector a and XA as a n x 1 vector v, PA = vV /Iv and .-.

SvTVv a T(XTx) -xT VX(X X)
tr(PAV) 2 T - (3.4) 2TT

DO a (X X) a

is equal to

var(aT )/var(aTsIp = 0) ,

Scott and Holt (1982) call this the misspecification effect (meff) for estimating

T 2
aT Since q 1, the numerator of Fk has a X distribution. This explains1J

our later empirical finding that the modified F procedure (3.3) works extremely

well in the one-parameter case.

The applicability of the proposed modified F procedures depends very much on

the accessibility of the values tr(PV) and tr(PAV). Let us consider a special 5
Ssituation where the k column vectors of X, denoted by x1,...,Xk, are orthogonal %

to each other. Then the projection matrix

=- T 2P L x xx /11xj.211[[;[

and

k k ^
tr(PV) = x TVx T = , var($j)/var(j1P = 0)

is the sum of misspecification effects for estimating the k orthogonal parameters

e ,... 6k. Similarly for testing or estimating q parameters out of 8 1,...,8k,
k~ k'

q < k, tr(PAV) is the sum of the corresponding q meffs. The proposed procedures

-7-
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require only k meffs, which may be provided by the sampler, no matter how large

n or c is. Note that the orthogonality condition on X is satisfied by balanced

ANOVA and simple linear regression. The latter will be studied in more detail in

Section 4.1. A simple model not satisfying the orthogonality condition will be .

considered in Section 4.2.

4. Examples

Here we allow the intracluster correlation coefficients P in cluster . to

be possibly unequal.

4.1. Simple linear regression

The ith observation in the 9th cluster can be expressed as

Y +(x x" ) i '(4.1)

wher, is the mean of x zi in the sample and 6£i satisfies the conditions

(2.1)-(2.2). The correction factor tr(PV)/2 in F', (3.1), can be computed as

indicated above since the vector 1 (T, 1  and x = (x - x ) are

Qrthoqonal. That is,

T T
1 Vi x Vx

tr(PV) = + D + (4.2)2 2 T T~ 2 ( 42

is an average of the overall meffs D and D for estimating a and 0. It can

be shown that

c
D a n (m£ + m (m[ I)0[

c m

(1 + (m - 1)0 (4.3)

is a weighted average of the meff

-a- ..-.. . . . . . . . .
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D =1 + (M 1)p

- 2
for estimating ai in cluster 9,and by writing T = x.-x0.) and

x,X i

- { 2.  Z.9  - X) +(1 -P~) 2 (x -X.. )
x z=i i=1

c T +,e2(~ x*,)

(1- 0+ (i 9 -~X

X-=1 x k

is a weighted average of the meff

for estimating in cluster 9,where

= (m )
Z'x Mn9 - T -1

can be regarded as a sample analog to the intracluster correlation of x in cluster

* 9-Z. The derivations of (4.3)-(4.4) become straightforward once the component V

of V is rewritten as (1 - P z )I z + P i JV-  where IXis the identity matrix and

* the matrix of one's, both of order mn-  In the special case mn-  m and

P P, Da 1 + (inm 1)P and D =1 + (in - )PP, where

1 ME z (xz-  -)

Px rn-i( T
x

can be regarded as a sample analog to the overall intracluster correlation of x.

* Since this is a relatively easy problem, we are able to do a more refinei

2
analysis. As shown in Section 2, the numerator of F, apart from 0 ,is

2 2
distributed as 1 lxI + 2 2X1, where A1  and A2 are the eigenvalues of PV and canr

...........................



be determined by

X + X = tr(PV) = D + D
1 2 CL

2 22 2 2 T 2+ = tr(PV) = D + D + 2(1T Vx )2 / (nT

1 2 x 8 2lx/n)

TT

For any fixed ll1 + '2' which is independent of Tvx, it follows from (4.5) that

I and would be wider apart if 1Tvx were not zero. One implication is that

the approximation to XX + X 2 by "1. t1 + X )X2  is less accurate for nonzero
1 1 2 1 2 1 2 2

1TVx and fixed X + X and therefore the effect of intracluster correlation on
1 a fe.

* F is more pronounced. Note that

1,vx = m(1 + (mj - 1)Pt)(xi. - x*) = 0

if (m - 1)P£ is constant. We conjecture that, for fixed D + D the meff on

F is smaller if m and P are both constant.

Since 1 and x are orthogonal, it is easy to see that the correction factor

tr(PAV) in FA for testing a and for testing 8 is respectively D. and D

Consider now the problem of testing a more general parameter c1 a + c2
8 , which can
-1 2-1

be handled by the formula (3.4). The vector v in (3.4) is n c 1 1 + T c2x and
x 2

2 2 2 2c c 2cc c c

tr(PV) = V- D + -- D 1)
n ai T a nT n T

x x x

which is not a weighted average of D and D (unless cl, c2  or T = 0) asr_.

one might expect.

4.2. Regression with two covariate variables

This is the simplest example in which the column vectors of X are not

orthogonal. The response value y., is related to the two covariates x.,  and

z2 i by

-x + (x x ) + Y(zi - z*o) + ERi (4.6)

where Ei satisfies (2.1)-(2.2). It is proved in Appendix A that
-10-
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tr (PV) =D~ + 2(D 8 + D) 2r 2 D8y (4.7)
1 2 '

1r -r

*where D~ and D. are the meffs for estimating a and 8, given by (4.3) and

(4.4), D Y is the meff for estimating YI and is analogous to D with x in

(4.4) replaced by l

r x T,/Ox I = corrQx,z)

is the correlation coefficient between x and =(zi- z*ti-

Li *d~li and

T

D8  TI ~ + (mi-It~zt (4.8)
X =1 xz

isaweighted average of D =1+ (m - )P P wit TT

I x'Lxz I xzL'

T xz' (X L. -. )(z L -Z0)

* and

-~ ~~ E 1(im 9 (X - -x.. )(z ~ *)-1

xzjt m~
Xz, 2

Unlike D8  and D Y the weight in (4.8) may be negative. For ME~ M= PL

D B =l1+ (m-l)PP ,Z where

1 E-i(xt. -X..)(z - N Z..)

can be regarded as a sample analog to the intracluster correlation between the

x 's and the z~2 s in the population.

* When r is small the third term of (4.7) is relatively small and tr(PV) is

* approximately the sum of the three meffs as in the orthogonal case already discussed.

*For example, when r =0.2, 1 - r2 =0.96 and 2r2 -0.08 so that the contribution 2I



-Z' I--.7VI- _1-1 7-.-.-.- - %kITC-17 . 1

of the third term is negligible since D ,y is at most of the same order as D

and Dy.

. It should be pointed out that, although Da and D in the two-variablea

regression model are formally the same as in the simple linear regression model, they .

are actually different since the intracluster correlation coefficient P varies

with model. Typically, if the additional covariate variable is effective in explain-

ing the variation due to the clustering variable, the P in the augmented model is

smaller.

For testing a, the correction factor tr(PAV) is Da, and for testing .

and Y, the correction factor tr(PAV) is

2 (D8 + D - 2r ) , (4.9)

-r

the second and third terms of (4.7). This is easy to see because the projection

matrix PA for the two problems are respectively the first term and the sum of the

second and third terms of P in (A.1). For testing Y only, the correction

factor tr(PAV) is computed as follows. To use the general formula (3.4), the

T-1 T
vector v - X(XTX) (0,0 ,1 )T in (3.4) turns out to be proportional to

T;%~xz "

which is denoted by 3 in (A.1). Then

wT VW
tr(PAV) -= 2

which is the third term of (A.2) and from formulae (A.3)-(A.4),

tr(PAV) 2 [D - 2r D + r2D 5 ] • (4.10)
1 - r

" When r is close to zero, tr(PV) is approximately equal to D but is in general

not equal to D . r'iz-
Y

-12-
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5. Empirical Investigations

5.1. Introduction ..... ,

Numerical results are presented for the case of two independent variables ,"

E(y) = a + 8x + Yz, the simplest model which allows us to explore the impact of p

various factors on the F statistic. Values of xt, and for the i unit

in the .th cluster have been generated from the bivariate normal distribution with

additional random effects components to allow for intracluster correlation on both x

and z,

xi =x + axt + xii

z+ +
1i =z z X zzi

2 2 2 2where C2  N(0,0 a N(0 2, ), N(0,0 ), e N(0,o ),"
xk ax z£ 'z xki ex zi z

p a a/(02 + 2 and P = a/(a2 + 2 ). The two cluster effects a and
x ax ax Ex z az az Cz x

a are correlated with coefficient P for the same cluster and similarly the twoz xz ...

individual terms C and C for the same unit are correlated. Otherwise random
x z

terms are uncorrelated. For given values of the various parameters, values for x

and z were generated for c = 10 clusters and m = 10 observations per cluster.

In the linear model framework inference is conditional on the values of x and z

and data sets were retained for use in the numerical investigations only if the

specific data set generated exhibited the required structure (i.e., achieved

estimates for P, Pz etc. were close to the desired values).

For the initial results describing the actual significance levels of the F

test when P is known (Table 1), the results were obtained for given values of x -

and z without simulation by using the approximation described in Appendix B.

Subsequent results on the performance of F' when P is unknown, on a further

modification to F and on the GLS procedure for comparative purposes were obtained

by computer simulation. Conditional on the values of x and z, values of y..

were generated with the required intracluster correlation structure using random

effects terms

-13-
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C2'

-o-.

aI

02 2 4where var(clt) = 0, va(~ n

a 2 + a2"

For each simulated set of y values, each of the test procedures was carried

out. For each set of x values the simulation was repeated 10,000 times to obtain

estimates of the actual significance level of each test procedure. Thus, actual

significance levels presented for each procedure are accurate to ±0.5%.

5.2. Known P .

Table 1 contains the actual significance level of the nominal 5% F test for

various values of P, Px, P and corr(A,z). In this table P = 0. The main

points to note are as follows. .

1. tr(PAV)/q is a good indicator of the level of distortion of the F test by A%'

intracluster correlation.

z2. When P 0, the F test is unaffected as we would expect.

3. Similarly when P= 0, there is no effect.

4. For testing Y 0 the strongest effect comes, as we would expect, from

P 0 with P 0.
z

5. Even when P 0, there is an effect from P $ 0, P p 0 when corr(x,z)
z x

is large. The correlation between x and z allows the intracluster correlation -

for the x variable to have an impact on the test for Y =0 (the coefficient of

the z variable). This effect is not as large as the direct effect of P ' 0.
z

This point can be explained by formula (4.10).

6. The effects for testing Y = = 0 tend to be larger than on the test for

= . This is easily justified by comparing (4.9) and (4.10).

-14-
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7. Although not shown in the table, the actual significance level for F' is p.

always 5% when testing Y = 0 since the numerator of the F statistic is a simple

multiple of only one X2  and the modification is exact, restoring the properties of
1

F entirely. For testing Y - 0 the approximation used in F' is not perfect

but the actual significance level achieved was in the range 5% to 7% in all cases.

TABLE 1: Actual significance level of the nominal 5% F test and the value of

tr(PAV)/q (in brackets) for c = 10 clusters and m 10 observations

per cluster when Pxz= 0.

Testing Y = 0

P P corr(x,z) p

0 .05 .1 .2 .4

.1 5 (1.0) 5 ( .99) 5 ( .98) 5 ( .96) 5 ( .92)
0 .4 5 (1.0) 5 (.99) 5 ( .97) 5 ( .94) 4 ( .88)

.7 5 (1.0) 5 (1.01) 5 (1.03) 6 (1.06) 7 (1.11)

0

.1 5 (1.0) 5 (.97) 5 (.95) 4 (.89) 3 (.79)
.4 .3 5 (1.0) 5 (1.01) 5 (1.02) 6 (1.04) 7 (1.08)

.5 5 (1.0) 7 (1.13) 8 (1.25) 11 (1.50) 18 (2.00)

0 5 (1.0) 7 (1.21) 10 (1.41) 15 (1.82) 24 (2.65)
0 .5 5 (1.0) 8 (1.24) 11 (1.47) 16 (1.94) 26 (2.88)

.6 5 (1.0) 9 (1.32) 13 (1.64) 20 (2.28) 31 (3.56)

..5

0 5 (1.0) 8 (1.21) 10 (1.43) 15 (1.85) 25 (2.71)
.4 .7 5 (1.0) 8 (1.23) 11 (1.45) 16 (1.91) 26 (2.81)

.8 5 (1.0) 9 (1.37) 14 (1.74) 22 (2.48) 35 (3.97)

-15-
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TABLE 1 - cont'd.

Testing = = 0

Oz Px corr(x,z) P
0 .05 .1 .2 .4

.1 5 (1.0) 5 ( .99) 5 ( .99) 5 ( .97) 5 ( .95)
0 .4 5 (1.0) 5 ( .99) 5 ( .98) 5 ( .97) 4 ( .93)

.7 5 (1.0) 5 (1.01) 5 (1.01) 6 (1.03) 6 (1.05)

0 Y

.1 5 (1.0) 6 (1.07) 8 (1.15) 11 (1.30) 17 (1.59)

.4 .3 5 (1.0) 7 (1.09) 8 (1.18) 12 (1.37) 19 (1.74)
.5 5 (1.0) 8 (1.15) 10 (1.30) 16 (1.60) 26 (2.19)

0 5 (1.0) 7 (1.09) 8 (1.19) 12 (1.37) 20 (1.74)

0 .5 5 (1.0) 7 (1.01) 9 (1.22) 13 (1.43) 22 (1.86)
.6 5 (1.0) 8 (1.15) 10 (1.30) 16 (1.60) 27 (2.20)

.5

0 5 (1.0) 8 (1.19) 12 (1.38) 19 (1.77) 33 (2.53)

.4 .7 5 (1.0) 8 (1.19) 12 (1.39) 19 (1.77) 33 (2.54)
.8 5 (1.0) 10 (1.27) 15 (1.54) 25 (2.08) 41 (3.17)

In practice it is unlikely that P = 0 since for many situations one wouldxz ,..

expect that the cluster effects for x and z are derived from a common source or

influence. In this case the cluster effe-ts for x and z would be positively

correlated. Figure 1 presents graphically an extension of the pattern of results in

Table 1 for testing Y = 0 to include P ' 0.
xz

We note the following points.

1. When corr(n,7) = 0, the value of Pz makes no difference. This is

because the only term involving Pxz in (4.10) is zero if corr(4,7) = 0.

2. In general, the effect on the F test is accentuated if there is a strong

difference between Pxz and corr(;,;). High values of Icorr(;,Z)l show

particularly strong effects when associated with P = 0. This is because the

second term of (4.10) is negative for P > 0 and will have a larger effect in
xz
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* Pz .5 P .3 p =.0

p =.1

x%

10I

30j

'-.33 33 .6-.33 0 .33 .66 -. 33 0 .33 .66
corr(X,Z) corr(X,Z) corr(X,Z)

=z .2,

-- px . 5

30- .

* 20 -.

10 1
0

-. 33 0 .33 .66 -. 33 0 .33 .66 -.33 0 .33 .66
corr(X,Z) corr(X,Z) corr(X,Z)

pxz 0
xz .1

.2

Figure 1: Actual significance level of the nominal 5% F test for c =m =10

for testing a 0, for varying p XZ
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reducing tr(PAV) when Icorr(lJ,)I is large. When Pxz = 0, the second term in

(4.10) is zero and there is no reduction to tr(PAV). ,

3. The affects described here, of the differential effect of P have a

smaller impact than the direct effects of P # 0 and P ' 0. This is obvious from

(4.10) since DS,,, which involves P z has coefficient r2  corr2( (<

and D, which involves P and P, has coefficient 1.c1

5.3. Unknown P

In general P is unknown and must be estimated in order to modify the F

statistic or alternatively to use GLS. As a first approximation, which requires no

iteration, we may use OLS to estimate the regression coefficients and then obtain an

estimate of P from the residuals

(n - k)O 2 = y' 1 - P)y

c
Let PBt = I'/m, where 2' (1...,1) of length m, PB = * P and

B= 1 B"

PW =I - PB" Here PB and PW are symmetric, idempotent projection matrices and

are orthogonal to each other. Now

'2
(n - k - c + 1)0 = y' (I - P)Pwy

.2 2
and we may use P 1- /G2. Typical simulation results for testing Y =0 are

presented in Table 2. The adjustment to F using P is better than using the

unadjusted F statistic but not as good as when P is known. .*. -.

Part of the problem with using P is that it is biased not simply because it is

a ratio estimator but also because 82 and 82 are biased.

Holt and Scott (1981) show that 82 is biased since

(n - k)E(82 )/02  tr[(I - P)V)

= n - k- P{m tr(PPB) - k} (5.1)
B

Sn - k""'"

In practice the extra term is small. For example, with m = c = 10, n = 100, k = 3,

P = 0.1, the downward bias in 2 is about 2% of a. Similarly,
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^2 2
(n-c-k+l)E(c7e )/O tr[I - P)Pw(I -P)V]

+ MP
n ~ ~ - c -( rP tr(PPB - tr(PPBPPB) (5.2)

TABLE 2z Actual significance levels for various tests, nominal 5% level;
testing Y 0.

P Z PZ corr(x,z) Test .1 05P.1 3

.1 .2 .0 .69 F(OLS) 5 8 10 20
F'(known P) 5 5 5 5lFI(estimated P) 6 6 7 8

.5 .2 .2 .0 F(OLS) 5 6 7 12
F'(known P) 5 5 5 5
F'(estimated P) 5 5 5 6

.1 .5 .1 -.35 F(OLS) 6 9 12 25
F'(known P) 5 5 6 6
F'(estimated P) 7 a 8 10

.5 .5 .2 .64 F(OLS) 6 9 14 29L
F'(known P) 5 5 5 5
F'(estimated P) 8 9 9 10

Ndosal tr(P 8) k and tr(PPB) -tr(PPBPPB) 0. Once again for n >> m, c, k

and mallvales o Pthe bias in is small. With the values of m, c, n,k

adPgiven above, the upward bias is 2% of 0

These small biases (in opposite directions) have a large impact on the bias of

P since for the example given

a (1.02)0~ 1.4C 0
E(P) EO1 1s 2 1.4 .0

a .98 a

Thus, when P =0.1, the bias is almost 0.04 (i.e. about one-half the value). This

suggests that small biases in estimating a0 and 0 2will have a large effect on
C
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p= .3 p =. .01

30

20

10

0- .33 0.33 .66 -3 0 .33 A6
corr (X, Z) corr (X, Z) corr(X,Z)

104

3 -3 1 .3-b633 0 .33 .66
corr (N.Z) corr (X, Z) corr (X, Z)

301

20 1.
10

0 4-_-.

-. 33 0 .33 66 -. 33 0 .33 .66 -. 33 0 .33 .66
corr(X,Z) corr(X,Z) corr(X,Z)

F ---- GLS .... F"

Figure 2: Actual significance levels for various tests, nominal 5% level,
with p~ .1, p .5, and m =c 10; testing a~ 0.
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the bias of P. Also, if and a were unbiased, then even small coefficients

of variation in the estimators would result in large fluctuations in P.

*Equations (5.1) and (5.2) suggest a further adjustment to the F statistic by

adjusting both 82 and 62to yield approximately unbiased estimates of 0 2and

02 in a two-stage process.

1. Use the OLS residuals to obtain a first estimate P as described above.

2. Replace P in (5.1) and (5.2) by P to obtain approximately unbiased

*estimates of 02 and 02 and hence a new estimate Pof P.

3. Use this estimate, P, in adjusting the F statistic as described for F'.

IWe call this statistic F" .

This procedure is a two-stage process (although it could be iterated) and is

*approaching the complexity of the iterative GLS procedure. Computer simulations were

I carried out to estimate the actual significance level of this procedure under various

*cor.ditions and also to compare with the iterative GLS procedure. Figure 2 shows the

actual significance levels for F" and GLS for various situations. When the true

value of P is very small (0.01), the GLS procedure has convergence problems and the

* significance levels reported are a slight underestimate since they are based only on

* those cases where convergence was achieved.

I The main points to note are as follows:

1. Both the F" procedure and GLS remove the substantial impact on the ordi-

nary F statistic when P is large, although at the cost of numerical complexity

Iand a slight increase in the significance level when P is very small (0.01).

*2. The F" procedure is superior to the GLS procedure for small (0.01) and

moderate (0.1) values of P.

U 3. The achieved significance levels are above 5% but the remaining distortion

is small. The worst situations are when corr(;S,g) is strong.

4. Only one choice of values of P and P is reported in Figure 2 but otherx z

values confirm the same pattern.
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5.4. Unequal intracluster correlations in different clusters

The theory in Section 4 allows for the possibility that P may vary across

clusters and we conjectured that variation in P would result in an increased

distortion to the F statistic. To explore this question we have carried out

further simulations which are from a model even more general than that used in .

Section 4. The previous simulation procedure was modified so that the random effect

generated for clusters was multiplied by a constant w for one-half of the clusters

and left as before for the other half. Thus for half of the clusters

var(ylx) = 
02 + a2, Pj = O2/(O2 + a2) - P 1 . say

for the other half of the clusters

var(ylx) :W 202 + o2, P W2o2 MW 2o 2 + G2 ) , say.

Thus the simulations allow for unequal Pt and also unequal variances of the error

terms from the model.

Table 3 contains the actual significance levels of the various test procedures

for the case when P. _ .48, Pz = .49 and Pxz = .42, and for various values of

P1  and P2. The table also contains corresponding results for the case of a common

value P for all clusters which was chosen to yield the same overall intracluster

correlation.

The main points to note are as follows: ,

1. The F test is slightly more distorted for unequal Pk, although the main

effect comes from P 9 0 rather than the variation in Pi.

2. Both the modified procedure F" and the GLS procedure continue to perform

reasonably well, although there is slightly more distortion than with constant p.

The GLS procedure seems slightly less affected than F".

-22-
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TABLE 3: Comparison of actual significance levels for various tests, nominal 5%

level, for equal and unequal PX; Px = .48, pz =.49, Pxz = .42, and

m = c = 10; testing 1 = 0.

Test
" PI P2  p F F" GLS

Unequal Pj 2 .3 .63 33.6 8.1 6.0
Equal PX .52 31.6 7.4 6.0

Unequal PX 4 .3 .87 45.4 8.9 5.7
Equal PZ .78 41.7 7.7 5.7

Unequal PZ 2 .1 .31 17.9 7.7 7.5
Equal PZ .22 17.2 6.9 7.1

Unequal PX 4 .1 .64 33.2 8.5 6.1
Equal P£ .49 30.3 7.4 6.1

Unequal PL 2 .05 .17 12.1 7.0 8.4

Equal PZ .12 11.7 6.8 8.2

Unequal Pj 4 .05 .46 24.0 8.2 7.0
Equal P9 .31 22.0 7.1 6.8

6. Conclusion -

It is clear that the ordinary F test may be seriously distorted in two-stage

sampling when there is positive intracluster correlation. Our theoretical results

show the importance of tr(PAV) as a diagnostic and basis for correction to the F

statistic. For cases where there is low correlation between the regressor variables,

tr(PAV) is seen to be approximated by the sum of the meffs for the variables involved

in any subset of regressors. A general ANOVA-type decomposition for tr(PAV) is

given in terms of the contributions of the individual regressors and their cross

products. TIe numerical results given show the possible levels of distortion to the
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significance level of the nominal 5% test for the case when there are 10 observations

per cluster. Larger cluster sample sizes will lead to greater effects and vice

versa.

When P is known (or when the sample size and number of clusters is so large

that P is very accurately estimated) a simple modification to the F statistic

seems to work well and to provide a test procedure of approximately the correct

significance level.

When P is unknown and must be estimated, we note the large effect on P which

2 2
comes from relatively small variations in 0 and a This, perhaps, explains the

common practice in the sample survey literature of pooling estimates of deff (and in

a similar way the correlated components of response variance) to achieve some

stability. In this case the usual alternative is to use GLS but for small values

of P (less than 0.1) we have suggested an alternative which is numerically simpler I_

and seems to work better in practice. In the survey context, experience suggests

that 0 < P < 0.1 is a likely range of possible values and so the F" procedure

suggested here is a realistic alternative to GLS. In our view, larger values of P

often suggest an inadequately specified model so that the first step should be to

introduce additional explanatory variables which account for some of the between-

cluster variation rather than simply accepting such a high value of P and modifying

the F statistic.

The final set of numerical results allow for a situation with unequal within -

cluster variances and correlations, which is more general than the population model

used in the theory. The limited numerical results presented suggest that these

sources of variation between clusters, increase the distortion of the usual F

procedure. Both the GLS and the alternative modification to F continue to work

reasonably well.
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Appendix A. Proof of (4.7) and (4.8).

Decompose into two orthogonal components

T T

"I IxI UM

and denote its second component by N. Then the projection matrix P can be

expressed simply as

T T T

n x UwN2 (A1

since 4,~and )g are mutually orthogonal. From (A.1),

1T V1 zT V IT V

x "W

whose first and second terms are D. and D respectively. To compute the third

term, note that

T 2 T
TT-_ TV

w Vw zVz + NO4 xVx 2 UXR2

T 2 T 2

=IzflD + D8 - 2 D 8  A3)

andL

T 2
2 2 X__ 2IYI = Z12 UZI (I r) .(A.4)

Formula (4.7) follows from (A.2)-(A.4). -
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To prove (4.8), note that

A £p(1tc - P x)T ~ + RI2 x -P)Z.-z.)

XZ01

= z xz,t' (Mi 2. j T -z .
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Appendix B. Approximation to the true significance level of F.

From (2.6), the true significance level of F

Prob{F > F (k,n-k)} = Prob{6TVl/2 P-d(I-P)]Vl/6 > 0}1 (A.5)

*where 6 N(0,I) and d k(n-k) F (k,n-k). Let

r r+1) >0= -"=X nA)' be the n eigenvalues of

(P -d(I -P)]V. Then (A.5) equals

r n

1 s+1 1

*where the E.'s are independent X random variables. Use the approximation

1n

1 s+1 VC.

where a- X IL/ Xi A x2i~A

s1 S+1 s+1 s+1

are obtained by matching the first two moments. The approximation in (A.7) is known ''.

* to be very accurate. Now (A.6) can be approximated by

2 2
ProbfaX /bX ;' 1} = Prob{F(U,V)11 V I

*which can be evaluated from the F distribution. The problem of non-integral

degrees of freedom P and V is handled by interpolation.
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